decompy.utils package¶
Submodules¶
decompy.utils.bayesmethods module¶
- decompy.utils.bayesmethods.ldxl(x, mu, sigma, ell, ln2m)¶
- decompy.utils.bayesmethods.ln2moment(mu, s2, lmax)¶
The ln2moment function calculates the logarithmic moments of a log-normal distribution given the mean, variance, and maximum order.
- Parameters:
mu – The parameter mu represents the mean of the log-normal distribution.
s2 – The parameter s2 represents the variance of the log-normal distribution.
lmax – The parameter lmax represents the maximum value of l in the calculation. It determines the
calculated. (number of logarithmic moments that will be) –
- Return type:
The function ln2moment returns an array l2mom containing the logarithmic moments up to a given
maximum value lmax.
- decompy.utils.bayesmethods.rW(kappa, m)¶
The function rW is a simulation of the auxilliary W variable based on the Wood (1994) method, which generates a random variable W with a specified shape parameter kappa and degrees of freedom m.
- Parameters:
kappa – The parameter kappa represents the shape parameter of the Wood distribution. It controls the
distribution. (skewness of the distribution. A higher value of kappa results in a more skewed) –
m – The parameter m represents the degrees of freedom in the Wood (1994) simulation. It determines
Z. (the shape of the beta distribution used to generate the random variable) –
- Return type:
The function rW returns the value of the auxilliary variable W, which is calculated using the Wood
simulation method.
References
- decompy.utils.bayesmethods.rXL(mu, sigma, ell, nu=1)¶
The rXL function is used to simulate a random variable following the XL (Extreme Lognormal) distribution.
- Parameters:
mu – The parameter mu represents the mean of the XL random variable. It is a measure of the central
distribution. (spread or variability of the) –
sigma – The parameter sigma represents the standard deviation of the XL random variable. It measures the
distribution. –
ell – The parameter “ell” represents the shape parameter of the XL random variable. It determines the shape
tails. (of the distribution and affects the tail behavior. A higher value of "ell" results in heavier) –
nu – The parameter nu represents the degrees of freedom for the t-distribution. It determines the
optional – The parameter nu represents the degrees of freedom for the t-distribution. It determines the
in (shape of the distribution and affects the tails of the distribution. Higher values of nu result) –
result (heavier tails and a distribution that resembles a normal distribution. Lower values of nu) –
tails (in lighter) –
- Return type:
The function rXL returns a simulated value from the XL (Extreme Lognormal) random variable
distribution.
References
- decompy.utils.bayesmethods.rmf_matrix(M: array)¶
The rmf_matrix function simulates a random orthonormal matrix from the von Mises-Fisher distribution using a rejection sampling method.
- Parameters:
M (np.array) – The parameter M is a numpy array representing a matrix. The shape of M is (m, R), where m
matrix. (is the number of rows and R is the number of columns of the) –
- Return type:
The function rmf_matrix returns a simulated random orthonormal matrix from the von Mises-Fisher
distribution.
- decompy.utils.bayesmethods.rmf_vector(kmu: array)¶
The rmf_vector function generates a random normal vector from the von Mises-Fisher distribution given a mean direction.
- Parameters:
kmu (np.array) – The parameter kmu is a numpy array representing the mean direction of the von Mises-Fisher
`(m (distribution. It is a vector of shape) –
)` –
distribution. (where m is the dimensionality of the) –
- Return type:
The function rmf_vector returns a random normal vector sampled from the von Mises-Fisher
distribution.
decompy.utils.constants module¶
decompy.utils.matrixmethods module¶
- decompy.utils.matrixmethods.accum_cv_metric(bcvs: ndarray, metric='MSE')¶
The accum_cv_metric function calculates a specified metric (MSE, MAE, MAD, or L2) for a given array of cross-validation scores.
- Parameters:
bcvs (np.ndarray) – The parameter “bcvs” is expected to be a numpy array containing the cross-validated metric scores.
fold (Each row of the array represents a different cross-validation) –
a (and each column represents) –
setting. (different metric score for a specific model or parameter) –
metric – The “metric” parameter is a string that specifies the type of metric to be used for calculating the
optional – The “metric” parameter is a string that specifies the type of metric to be used for calculating the
are (scores. The available options) –
- Return type:
The function accum_cv_metric returns the calculated scores based on the input metric.
- decompy.utils.matrixmethods.extract_submatrix(X: ndarray, rowmin: int, rowmax: int, colmin: int, colmax: int)¶
The extract_submatrix function takes a matrix X and extracts a submatrix defined by the given row and column ranges, returning four submatrices A, B, C, and D.
- Parameters:
X (np.ndarray) – The input matrix from which the submatrix will be extracted.
rowmin (int) – The rowmin parameter represents the starting row index of the submatrix to be extracted.
rowmax (int) – The parameter rowmax represents the maximum row index of the submatrix to be extracted.
colmin (int) – The colmin parameter specifies the minimum column index to be included in the submatrix.
colmax (int) – The parameter colmax represents the maximum column index of the submatrix to be extracted.
- Returns:
The function `extract_submatrix` returns four submatrices
- Return type:
A, B, C, and D.
- decompy.utils.matrixmethods.g_inverse(X: ndarray, rank: int = 1)¶
The g_inverse function performs a rank-SVD decomposition on an input matrix and returns its inverse.
- Parameters:
X (np.ndarray) – The parameter X is a numpy array representing the input matrix for which we want to perform the
inverse. (SVD and) –
rank (int, optional) – The rank parameter specifies the number of singular values and vectors to keep in the rank-SVD
default (decomposition. It determines the level of approximation in the inverse calculation. By) –
it –
1 (is set to) –
inverse (meaning only the first singular value and vector will be used in the) –
calculation. –
- Return type:
The function g_inverse returns the inverse of the rank-SVD decomposition of the input matrix X.
decompy.utils.rootmethods module¶
- decompy.utils.rootmethods.roots_cubic(a2, a1, a0)¶
The roots_cubic function calculates the roots of a cubic equation given the coefficients.
- Parameters:
a2 – The coefficient of the cubic term in the equation.
a1 – The parameter a1 represents the coefficient of the linear term in the cubic equation.
a0 – The coefficient of the constant term in the cubic equation.
- Return type:
The function roots_cubic returns an array containing the three roots of a cubic equation.
- decompy.utils.rootmethods.roots_quartic(a3, a2, a1, a0)¶
The roots_quartic function calculates the roots of a quartic equation given its coefficients.
- Parameters:
a3 – The parameter a3 represents the coefficient of the quartic term in the quartic equation.
a2 – The parameter a2 represents the coefficient of the quadratic term in the quartic equation.
a1 – The parameter a1 represents the coefficient of the linear term in the quartic equation.
a0 – The parameter a0 represents the coefficient of the constant term in the quartic equation.
- Return type:
The function roots_quartic returns an array containing the four roots of the quartic equation.
decompy.utils.simmethods module¶
- decompy.utils.simmethods.generate_LSN(n, p, r, noise=None, outlier=None)¶
The generate_LSN function generates a matrix X by multiplying two low rank random matrices A and B, and adding noise and outliers to the result.
- Parameters:
n – The parameter n represents the number of rows in the generated matrix X. It determines the size
axis. (of the matrix along the vertical) –
p – The parameter p represents the number of columns in the matrix X.
r – The parameter r represents the rank of the matrix L. It determines the number of linearly
L. (independent columns in the matrix) –
noise – The “noise” parameter controls the amount of random noise added to the generated matrix. It is a
to (scalar value that determines the standard deviation of the noise. If the noise parameter is set) –
None –
matrix. (no noise will be added to the) –
outlier – The “outlier” parameter controls the presence of outliers in the generated data. It is a value
the (between 0 and 1 that represents the probability of an outlier being present in each element of) –
0 (data matrix. If the value is) –
present. (no outliers will be) –
- Returns:
The function `generate_LSN` returns a matrix `X` which is the sum of three components
- Return type:
L, S,
and N.
decompy.utils.validations module¶
- decompy.utils.validations.check_binary_matrix(X: ndarray)¶
The function checks if a given numpy array is a binary matrix.
- Parameters:
X (np.ndarray) – a numpy array representing a binary matrix. The function check_binary_matrix checks if the input
conditions (matrix satisfies the following) –
- decompy.utils.validations.check_real_matrix(X: ndarray)¶
The function checks if the input is a real matrix in the form of a numpy array.
- Parameters:
X (np.ndarray) – a numpy array that represents a matrix.
- decompy.utils.validations.is_decreasing(a)¶
The function checks if all elements in a given array are in decreasing order.
- Parameters:
a – The parameter a is a one-dimensional numpy array of numbers. The function is_decreasing checks
order (if the elements in the array are in decreasing) –
or (meaning that each element is greater than) –
is (equal to the element that comes after it. The function returns True if the array) –
- Return type:
The function is_decreasing(a) returns a boolean value indicating whether the input array a is
in decreasing order or not. If a is in decreasing order, the function returns True, otherwise it returns False.
- decompy.utils.validations.is_increasing(a)¶
The function checks if a given array is in increasing order.
- Parameters:
a – a is a one-dimensional numpy array containing a sequence of numbers. The function is_increasing
increasing (checks if the sequence is strictly) –
greater (meaning that each element in the sequence is) –
and (than the previous element. The function returns True if the sequence is strictly increasing) –
otherwise. (False) –
- Return type:
The function is_increasing(a) returns a boolean value indicating whether the input array a is
increasing or not. It returns True if all the elements in the array are in increasing order, and False otherwise.